Grade 5 - Perimeter and Area

Perimeter

Perimeter is the distance around the outside of a figure (shape). It is the total length of all the sides of a figure added together. Let us see an example.

Step 1

Each square is 1×1 centimeter. Try and measure it and see if you can find the perimeter of the rectangle.

Step 2

Use the equation and calculate the perimeter.

$$
5+3+\square+\square=
$$

\qquad

3 cm

5cm

Find the perimeter of the rectangle and the square. Remember to use the units correctly (\mathbf{m} and $\mathbf{m m}$).

Perimeter

Find the perimeter of each figure.
1)

7 cm
Perimeter $=$ \qquad
2)

4 cm
Length $=$ \qquad Width $=$ \qquad
4cm
Perimeter $=$ \qquad
3)

8 cm
Length $=$ \qquad Width $=8 \mathrm{~cm}$

Perimeter $=$ \qquad
3 cm
Find the missing measurement (length or width) of each figure.

7.5 cm
5) $\begin{array}{ll}\square .5 \mathrm{~cm} & \text { Perimeter }=10 \mathrm{~cm} \\ ? \mathrm{~cm} & \text { Length }= \\ \text { 6) } & 8 \mathrm{~cm} \\ ? \mathrm{~cm} & \text { Perimeter }=24 \mathrm{~cm} \\ & \text { Width }=\end{array}$

\qquad

? $\mathbf{c m} \quad$ Perimeter $=22 \mathrm{~cm}$
Width = \qquad

Perimeter

Complete the perimeter chart below. Each figure in the chart is a regular figure with sides of 5 centimeters.

Regular Figure	Addition Expression	Multiplication Expression	Perimeter
7)	Triangle		
8)	Square	$5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}$	$5 \mathrm{~cm} \times 4$
9)	Pentagon		
10)	Hexagon		
11)	Octagon		

Complete the following word problem.
12) A rectangular room has sides of 6 m and 4 m . You want to use the formula $\boldsymbol{P}=\mathbf{2 l + 2 w}$. What numbers would you put for \boldsymbol{I} and \boldsymbol{w} ? Does it matter if you switch the numbers? Finally, give the perimeter of the room.
$I=$ \qquad
$\boldsymbol{w}=$ \qquad

Does it matter if you switch the numbers? \qquad

Perimeter $=$ \qquad

Area of a Parallelogram

A parallelogram is a four-sided figure with two sets of equal sides. The most normal example of a parallelogram is a rectangle. Let us look at an example:

In this example, what is the perimeter of the rectangle? From our previous lesson on perimeter, we add up all the sides. In this case, we do the following: $5 \mathrm{~cm}+5 \mathrm{~cm}+3 \mathrm{~cm}+$ 3 cm . We could also follow the equation $\boldsymbol{P}=\mathbf{2 l}+\mathbf{2 w}$, and insert 5 for \boldsymbol{I} and 3 for \boldsymbol{w}. This gives us a perimeter of $16 \mathbf{c m}$. But what if we want to find the area of the rectangle?

We measure the area of something by finding the number of square units it is. A square unit is a square with sides that are one unit (how something is measured or shown) long. In our example, the unit is $\mathbf{c m}$. To measure the area of something, we use the following equation: $\boldsymbol{A}=\boldsymbol{I} \boldsymbol{x} \boldsymbol{w}$. Like in the previous perimeter question, we insert 5 for \boldsymbol{I} and 3 for \boldsymbol{w}. What does that look like for our example?
$A=I \boldsymbol{x} \boldsymbol{w} \rightarrow \boldsymbol{A}=5 \mathrm{~cm} \times 3 \mathrm{~cm} \rightarrow \boldsymbol{A}=\mathbf{1 5} \mathrm{cm}^{\mathbf{2}}$
The area of the rectangle from our example is $\mathbf{1 5} \mathrm{cm}^{2}$. We use the " 2 " after " $\mathbf{c m}$ " to show the answer in square units.

A rectangle is not the only kind of parallelogram. To find the area of non-rectangular parallelograms, we use a similar method as before, but the equation is a bit different. The equation we use is $\boldsymbol{A}=\boldsymbol{b} \boldsymbol{h}$. "Base" is represented by \boldsymbol{b}, and "height" is represented by \boldsymbol{h}.

Area of a Parallelogram

Find the area of each figure. Use the correct unit ($\mathbf{c m}, \mathbf{k m}, \mathrm{mm}$).

6)

Base = \qquad
Height = \qquad
Area $=$

Area of a Parallelogram

Complete the chart below. Find the width, length and perimeter of each rectangle.

7)	Area of Rectangle	Length	Width	Perimeter
	$36 \mathrm{~cm}^{2}$	1 cm	cm	74cm
	$36 \mathrm{~cm}^{2}$	2 cm	cm	cm
9)	$36 \mathrm{~cm}^{2}$	cm	12 cm	cm
	$36 \mathrm{~cm}^{2}$	cm	6 cm	cm

Complete the chart below. Find the base and height of each parallelogram.

	Area of Parallelogram	Base	Height
11)	$24 \mathrm{~cm}^{2}$	3 cm	_ cm
12)	$24 \mathrm{~cm}{ }^{2}$	6 cm	- cm
13)	$24 \mathrm{~cm}^{2}$	_ cm	12 cm
14)	$24 \mathrm{~cm}^{2}$	_ cm	24 cm

Complete the following word problem.
15) Mrs. Kim drew a parallelogram with a base of 4 cm and an area of $16.4 \mathrm{~cm}^{2}$. Draw her parallelogram. What is the height of the parallelogram?

Area of a Triangle

A triangle is a three-sided shape. In order to find the area of a triangle, we use a similar equation to the one we use when finding the area of a parallelogram. Last week we learned the equation for finding the area of a parallelogram:
Area= base \mathbf{x} height $\rightarrow \boldsymbol{A}=\boldsymbol{b} \boldsymbol{h}$
The equation for finding the area of a triangle is similar.
The area of a triangle is as follows: Area $=\frac{1}{2} \mathrm{x}$ base x height $\rightarrow A=\frac{1}{2} x \boldsymbol{b} \boldsymbol{h}$. As you can see, there is a $\frac{1}{2}$ here that is new.
Let us look at a triangle and compare it to a parallelogram:

On the left, you can see a triangle with a height and a base. Below, we added another triangle. What shape do you see?

When we add two triangles together, they make a parallelogram. This is the reason for writing $A=1 / 2 \mathbf{x} \mathbf{b} \mathbf{x}$ h.

If we took half the area of a parallelogram, it would have the area of one triangle.

1. Find the area of this triangle.

Height $=$ \qquad

$$
\begin{gathered}
\text { Base }= \\
\text { Area }=1 / 2 \times
\end{gathered}
$$

Area of a Triangle

Find the area of each triangle. Show your calculations and remember the unit (mm, cm, km).

2)	Height $=$ Base $=$ \qquad Area $=$ \qquad
3)	Height $=$ Base $=$ \qquad Area $=$
4)	Height $=$ Base $=$ \qquad Area $=$
5)	Height = Base $=$ \qquad Area $=$ \qquad

Solve the following word problem. Show your calculations and the drawing.
6) A triangle has a height of 6 cm and an area of $24 \mathrm{~cm}^{2}$. How long is the base of the triangle?

Height $=$ \qquad

Base = \qquad

Area $=$ \qquad

Area of a Triangle

6) A triangle has an area of $48 \mathrm{~cm}^{2}$. What are some possible sizes that the triangle could be? Draw three possible triangles and label the sizes of their bases and heights.

Triangle \# 1 -

Triangle \# 2 -

Triangle \# 3 -

Perimeter and Area of Complex Figures

A complex figure is made of smaller polygons. As you can see below, the shape is made out of two shapes, a square and a rectangle (they are colored differently to help).

The easiest way to solve a complex figure is to separate them into simple figures. In this example, we made a rectangle and a square.
Now we need to figure out the height, length, perimeter, and area of both shapes.

We know that the length of the white square is 9 mm , we know that the grey rectangle's width is 6 mm , and we know the grey rectangle's length is 18 mm . What are the missing measurements? Write them above.

Now that we have found the missing measurements, we can start cutting the complex shape up. We can find the last measurement by removing the grey rectangle and subtracting its width from our length.

This assignment would be too easy if this was all you needed to do. Now we need to calculate the complex shape's perimeter and its area (remember the units).

Perimeter $=$ \qquad

6 mm
18 mm

Perimeter and Area of Complex Figures

Find the perimeter and area of the following complex figures.

3) Perimeter - \qquad Area - \qquad
4) Perimeter - \qquad Area - \qquad
5) Perimeter - \qquad Area - \qquad
6) Perimeter - \qquad Area - \qquad
7) Perimeter - \qquad Area - \qquad
8) Perimeter - \qquad Area - \qquad

Solid Figures

We have learned about two dimensional figures, and now it is time we learn about three dimensional figures(3D). A solid figure is a shape with not only length ($/$) and width (w), but also with a height (h).

There are many kinds of examples of solid figures. The most common one is the cube.

Today we are going to learn about the names and what different solid figures look like.

Solid Figures

Write the names of the solid figures.

Draw 3 solid figures.

Surface Area

To determine the surface area of a cube, you must first remember that all the sides are equal. This means that each face will be the same size. A cube has six faces, which means that once you find the size of the face, you can multiply the answer by 6 to find the surface area. Let us see an example.

Face \# 1 Area: $2 \times 2=4$ Surface Area of Cube: $4 \times 6=24$

The surface area is $24 \mathrm{~cm}^{2}$.

With this example in mind, complete the following chart.

	Length of One Side of Cube (s)	Area of One Face (f)	Surface Area of Cube (SA)
EX.	2 cm	$4 \mathrm{~cm}^{2}$	$24 \mathrm{~cm}^{2}$
4.	3 cm		
5.	4 cm		
6.	5 cm		
7.	6 cm		
8.	7 cm		
9.	8 cm		

10.

Look at the answers you have for questions 4-9. Can you write an equation that uses the length of one side (s) to find the cube's surface area (SA)?

The equation is: \qquad

Solid Figures

The surface area of a solid figure is the total of all the areas of all its faces (each flat surface) and is measured in square units. Let us look at an example.
Determine the surface area of the following solid figure. Since this figure is a rectangular prism, this means its opposite faces are the same length. This means that we can multiply each calculation by 2.

Method 1 - Find the Areas of the Faces Top and bottom: $2 \times(12 \times 3)=2 \times 36=72$ Front and back: $2 \times(3 \times 2)=2 \times 6=12$ Right and left sides: $2 \times(12 \times 2)=2 \times 24=48$ The total of the areas: $72+12+48=132$ The surface area is $132 \mathrm{~m}^{2}$.
Method 2 - Use an Equation Surface Area $=2 \times$ (length \times width + width \times height + height x length) $\begin{gathered} \text { Surface Area }=2 \times(12 \times 3+3 \times 2+2 \times 12) \\ \text { Surface Area }=2 \times(36+6+24) \\ \text { Surface Area }=2 \times(66) \\ \text { Surface Area }=132 \end{gathered}$ The surface area is $132 \mathrm{~m}^{2}$.

Solid Figures

Let us look at another example. This time, we will try to find the surface area of a triangular prism.
Remember, the top and the bottom are triangles that are the same in this triangular prism. The front, left side, and right side are rectangles that are NOT the same.

We need to find the areas of the faces.

Front

The top and bottom are triangles, so we need to use the formular for the area of a triangle: $\mathrm{A}=\boldsymbol{h} * \boldsymbol{b} * \frac{1}{2}$. Because this is a right-angled triangle, we know the height is 6 m . Our formula should then look like this. $A=6 * 5 * \frac{1}{2}=15$, which means our triangles' surface area is $15 \times 2=30$.
The front, left and right sides are rectangles, so we use the formula for a rectangle's area.
Front: $2 \times 5=10$
Left side: $2 \times 6=12$
Right side: $2 \times 7=14$
Then we add all the areas together and get: $30+10+12+14=66$
The surface area is $66 \mathrm{~m}^{2}$.

I 12. Calculate the surface area of this triangular prism.

Surface Area

Determine the surface area of each solid figure.

13. Surface Area - \qquad
14. Surface Area - \qquad
15. Surface Area - \qquad

16. Surface Area - \qquad

2 cm

17. Surface Area - \qquad

Volume

The volume of a solid figure is the amount of space the figure occupies. Volume is measured using cubic units. A cube measuring 1 unit on each edge has a volume of 1 cubic unit.

Find the volume of the solid figures.

1) Volume $=$	2) Volume = \qquad	3) Volume =
4) Volume = \qquad	5) Volume = \qquad	6) Volume = \qquad

Volume

Volume of Triangular Prism

The volume of the triangle prism at the left is one half of the volume of a rectangular prism with the same length, width and height.

$$
\frac{1}{2} \times 3 \times 2 \times 4=12 \mathrm{~m}^{3}
$$

length $=3 \mathrm{~m}$
width $=2 \mathrm{~m}$
height $=4 \mathrm{~m}$
X $\frac{1}{2}$
Total volume $12 \mathrm{~m}^{3}$

HINT* You can divide the total of a rectangular prism with the same length, width, and height as your triangular prism by 2

Find the volume of the solid figures.

1) Volume $=$ \qquad

2) Volume = \qquad

3) Volume $=$ \qquad

4) Volume $=$ \qquad

5) Volume = \qquad

6) Volume $=$ \qquad

Volume

Volume of Complex Figures

Separate the complex figure into simpler solid figures. Find the volume of each figure. Add the volumes together.

Figure A

length $=1 \mathrm{~m}$
width $=3 \mathrm{~m}$
height $=2 \mathrm{~m}$

Total volume $=6 \mathrm{~m}^{3}$

Figure B
length $=2 \mathrm{~m}$
width $=3 \mathrm{~m}$
height $=3 \mathrm{~m}$

Total volume $=18 \mathrm{~m}^{3}$

Figure A + B

$$
V=6 m^{3}+18 m^{3}
$$

Total volume $=24 \mathrm{~m}^{3}$

Find the volume of the figures.

A

B

1)

Volume of $\mathrm{A}=$ \qquad

Volume of $B=$ \qquad
\qquad Volume of $A+B=$ \qquad
3)

Volume of $\mathrm{A}=$ \qquad Volume of $B=$ \qquad Volume of $A+B=$ \qquad

Perimeter and Area - Test

Signature \qquad

Find the perimeter and area of the following figures. Show your calculations.
1)
5 cm
7 cm

Perimeter - \qquad

Area -
2)

4 cm

Perimeter - \qquad

Area -

Find the area of each triangle. Show your calculations.
3)

12 mm
Area -

Area -
6.5 cm
5)

8.5km

Area -

Perimeter and Area - Test

Find the perimeter and area of the following complex figures. Show your calculations.

> Perimeter -
\qquad

Area -

Perimeter - \qquad

Area -
8) 11 cm

Perimeter - \qquad

[^0]22

Perimeter and Area - Test

Name the solid figure and calculate the surface area.

9. Name of the Prism: \qquad

Surface Area: \qquad

10. Name of the Prism: \qquad

Surface Area: \qquad

Calculate the volume of the prisms below.

11) Volume $=$ \qquad

12) Volume $=$ \qquad

1 cube $=1 \mathrm{~cm}^{3}$

14)

Volume = \qquad 15) Volume $=$ \qquad

13) Volume $=$ \qquad

1 cube $=1 \mathrm{~m}^{3}$

16) Volume $=$ \qquad

[^0]: Area -

