

Name	<u>Number</u>	<u>Class</u>	<u>Group</u>	<u>Career</u>

SOLUTIONS

The grade 5 English science unit, Dissolution and solution, meets the academic content standards set in the Korean curriculum, which state students should:

- A. Compare the weights of a solid before and after dissolving it and understand the phenomenon of dissolution through the perspective of particle theory.
- B. Learn that the dissolving volumes of solids differ according to the types and volumes of solute through the activities of dissolving a variety of solids in water.
- C. Develop new methods to compare concentrations of solutions.
- D. Confirm via experiment that the temperature of water is a major factor affecting a solute's volume when dissolved.

Concontration	집중	To make a liquid thicker or denser	
Concentration	濃厚	the liquid.	
Dissolve	녹이다	The process of something coming	
DISSOIVE	溶解する	formation of a crystal.	
Formation	형성	The process of something coming	
Formation	形成	formation of a crystal.	
	가스	A substance, such as, air, that will	
GdS	気体	contains it.	
	명반	The chamical formula for alum	
$KAI(SU_4)_2$	ミョウバン	The chemical formula for alum.	
Liquid	액체	A substance that flows readily	
Liquid	液体	and can be poured.	
	질량	In science, the amount of physical	
Mass	質量	matter that an object contains.	
	분자	The smallest unit that a chemical can be divided into. Molecules	
Molecules	分子	are made of more than one atom.	
	소금	The chemical formula for table	
INACI	塩	salt.	

Dartiala	입자	An extremely small piece or	
Particle	粒子	amount of something.	
	가득한		
Saturated	飽和	To be full of somethings.	
Calid	고체		
Solid	固体	Hard and firm; not a liquid or gas.	
Solublo	녹는	Easily dissolved in liquid,	
Soluble	可溶性	especially water.	
Soluto	용질	the minor component in a	
Solute	溶質	solution, dissolved in the solvent.	
	용액	A mixture made of a solute put	
Solution	解決	inside a solvent(Liquid).	
Calvarat	용매	A substance, usually a liquid, that	
Solvent	溶媒	can make another solute dissolve.	
Supercaturated	과포화	Having more of a solute in a solvent than it normally can hold	
Supersaturated	過飽和	either by heating or cooling the solvent.	
	식초	A sour liquid made from	
Vinegar	お酢	juices, and used to flavor and preserve food.	

IOGABULAEV 1	Definition is My sentence the green star. is the blue star.
★ <u>Concentrat</u> ion	
*	
Dissolve	
* Coluto	
★	
<u>Solvent</u>	
* Solution	
*	

SOLUTIONS

When we mix two or more things the weight will always stay the same as the two things mixed. If you mix **50g** of water with **20g** of salt the total weight will be **70g**. The mass doesn't change when we mix a solute with a solvent, the solution just becomes denser.

Concentration

Concentration is measure in how much solute per solvent there is in our solution. Concentration can be measure in % or in **g/ml**. If we mix 10g of salt(solute) into 100ml of water(solvent) the concentration would be 10g/100ml.

1. Color and write down the names of the pictures correctly.

2. Solve the equation and colour the mixtures correctly.

3. Solve the equation and colour the mixtures correctly.

 \Diamond

GUIDE

Convection:

Convection is the way liquids and gases move. When a liquid is denser it will naturally move down, and when it is less dense it will naturally move up. Density can be changed in the same liquid through 2 ways. First is through heat. The hot and less dense liquid moves up, the cold and denser liquid moves down. The second way is by mixing a solute in the water, making the concentration of solute higher, and thereby making the solution denser.

Hypothesis: Draw how you expect the liquids to move.

₿

SOLUTIONS

OBSERVATION

Why did the red liquid go up?

What happened when you added too much salt?

Draw what happened in the experiment.

OCABULARY 2	Definition is My sentence the green star. is the blue star.
★ Vinegar	
*	VINEGAR
Gas	
*	
Soluble	
*	
<u>Solvent</u>	
*	
Solution	
*	

42g + = 42g = 6

Experiment 1

Solute	Solute mass until precipitate	Solvent (water) and Beaker mass	Total mass after precipitate
Example	20g	156g	176g
Salt			
Sugar			

Experiment 2

Solute	Solute mass	Solvent (vinegar) and Beaker mass	Total mass before mixing (Calculated)	Total mass after mixing
Baking powder	10g			

OBSERVATION

1. Draw what you saw happen when we added baking powder to the vinegar.

OGABULARY 3	Definition is My sentence the green star. is the blue star.
★ <u>Mass</u>	
*	
Density	
*	
<u>Saturated</u> ★	
*	
<u>Particle</u> ★	
*	
<u>Saturation</u>	
*	

Is shown as Salt(NaCl) particle

> HOMEWORK

4. Why would the golf ball float when there is more salt in the solution?

5. What happens when we add salt to a solution?

6. What can we use this information for?

SOLUTIONS

GUIDE

Density.

will always stay the same as the two things

mixed. If you mix **50g** of water with **20g** of

salt the total weight will be **70g**. The mass

solvent, the solution just becomes denser.

Density experiment.

Solute	Density	Colour	Order from 1-6
Water	0.99g/ml	Blue	
Oil	0.92g/ml		
Dish detergent	1.03g/ml		
Sirup	1.37g/ml		
Salt water	1.20g/ml	Red	
Soya Sauce	1.08g/ml		

1. Color the pictures and solve the math problem.

2. Color the pictures and write the names of the pictures.

3. Write the definition and make a sentence. (Bonus. Draw a picture that matches the word

7. Draw the golf ball and write the correct state of the solution.

OCABULARY 4	Definition is My sentence the green star. is the blue star.
★ <u>NaCl</u>	
*	
(KAI(SO₄)₂) ★	
*	
Super Saturated	
*	
<u>Formation</u> ★	
*	
<u>Saturation</u>	
*	

Is shown as Alum ($KAl(SO_4)_2$). Particles.

1. Color the particles and crystals to match the solution.

2. How can we make something super saturated. (Color the correct answer)

By increasing the temperature and then lowering it

By lowering the temperature and then increasing it By adding more solvent to the mix

3. What are some safety measures you should do when working with hot liquids? (Color the correct answer)

XX

SOLUTIONS

OBSERVATION

1. Color the beaker before adding alum. Draw particles that are inside the beaker.

2. Color the beaker after adding alum. Draw particles that are inside the beaker.

3. Color the beaker after waiting one week. Draw particles that are inside the beaker.

D

EXTRA

Draw your favorite character.

Tell me about them!

6

D

Draw yourself doing an experiment

Ø

0

Q

0

Write about what you like in science

 -
-
_
 _
 -
 -
_
 _
 -
 -
-
 _
 -