:i SOLUTIONS

\therefore
0 Coser

The grade 5 English science unit, Dissolution and solution, meets the academic content standards set in the Korean curriculum, which state students should:
A. Compare the weights of a solid before and after dissolving it and understand the phenomenon of dissolution through the perspective of particle theory.
B. Learn that the dissolving volumes of solids differ according to the types and volumes of solute through the activities of dissolving a variety of solids in water.
C. Develop new methods to compare concentrations of solutions.
D. Confirm via experiment that the temperature of water is a major factor affecting a solute's volume when dissolved.

Concentration	집중	To make a liquid thicker or denser by adding something or removing the liquid．
	濃厚	
Dissolve	녹이다	The process of something coming into existence，as in the formation of a crystal．
	溶解する	
Formation	형성	The process of something coming into existence，as in the formation of a crystal．
	形成	
Gas	가스	A substance，such as，air，that will spread to fill any space that contains it．
	気体	
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$	명반	The chemical formula for alum．
	ミョウバン	
Liquid	액체	A substance that flows readily and can be poured．
	液体	
Mass	질량	In science，the amount of physical matter that an object contains．
	質量	
Molecules	분자	The smallest unit that a chemical can be divided into．Molecules are made of more than one atom．
	分子	
NaCl	소금	The chemical formula for table salt．
	塩	

Particle	$\begin{aligned} & \text { 입 丆 } \\ & \text { 粒子 } \end{aligned}$	An extremely small piece or amount of something．
Saturated	フト득한	To be full of somethings．
	飽和	
Solid	上 大小	Hard and firm；not a liquid or gas．
	古体	
Soluble	녹는	Easily dissolved in liquid， especially water．
	口溶性	
Solute	¢ ᄌ	the minor component in a solution，dissolved in the solvent．
	浴質	
Solution	$\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{OH}$	A mixture made of a solute put inside a solvent（Liquid）．
	解決	
Solvent	¢ O_{8}	A substance，usually a liquid，that can make another solute dissolve．
	浴媒	
Supersaturated	과포 하	Having more of a solute in a solvent than it normally can hold either by heating or cooling the solvent．
	過飽和	
Vinegar		A sour liquid made from fermented wine，cider，or other juices，and used to flavor and preserve food．
	お酉乍	

VOCABULARY

Definition is the green star.

My sentence is the blue star.

Concentration

 Dissolve

Solute

Solvent

$\star \overline{\text { Solution }}$

A solution is made when a solute dissolves in a solvent. The solutions we will look at are either:

a solid (solute) and a liquid (solvent).
 a liquid (solute) and a liquid (solvent).
 There is always more solvent than solute: Solvent $(50 \mathrm{~g})$ and Solute (10 g).

Solvent

Solution

When we mix two or more things the weight will always stay the same as the two things mixed. If you mix 50 g of water with 20 g of salt the total weight will be $\mathbf{7 0 g}$. The mass doesn't change when we mix a solute with a solvent, the solution just becomes denser.

Concentration

Concentration is measure in how much solute per solvent there is in our solution. Concentration can be measure in $\%$ or in g / ml. If we mix 10 g of salt(solute) into 100 ml of water(solvent) the concentration would be $10 \mathrm{~g} / 100 \mathrm{ml}$.

:	SOLUTIONS	
\%	Sth MOMEWORK	

1. Color and write down the names of the pictures correctly.

2. Solve the equation and colour the mixtures correctly.

3. Solve the equation and colour the mixtures correctly.

Convection:

Convection is the way liquids and gases move. When a liquid is denser it will naturally move down, and when it
 is less dense it will naturally move up.
Density can be changed in the same liquid through 2 ways. First is through heat. The hot and less dense liquid moves up, the cold and denser liquid moves down.
The second way is by mixing a solute in the water, making the concentration of solute higher, and thereby making the solution denser.

Hypothesis: Draw how you expect the liquids to move.

Salt/Water concentration is $15 \mathrm{~g} / 100 \mathrm{ml}$

More than 15 g of salt Per 100ml

Less than
 15 g of salt Per 100ml

:	SOLUTIONS	
\%	dibobsarvation	

> Why did the red liquid go up?
\square

What happened when you added too much salt?

Draw what happened in the experiment.

VOGABULARY

Definition is
the green star.

My sentence is the blue star.

Vinegar

$\stackrel{1}{4}$
 Gas

Soluble

Solvent

$\star \overline{\text { Solution }}$

A solution is made when a solute dissolves in a solvent. However, the concentration can be different, we call this saturation.
mildly saturated means there is space for more solute in the solvent.

Saturated, means there can no longer fit anymore solute in the solvent.

In this weeks experiment the solute will be Salt(NaCl) In the picture the salt is shown as a particle.

mildly saturated

Saturated

Saturation.

Saturation is how much you can put of one solute into a solvent. Different solvents have different saturations. You can only put 36 g of salt into 100 ml of water, before the water is saturated (Full of salt). But you can put $\mathbf{2 0 0 g}$ of sugar into 100 ml of water before the solvent is saturated.

When we mix two or more things the weight will always stay the same as the two things mixed. If you mix 50 g of water with $\mathbf{2 0 g}$ of salt the total weight will be $\mathbf{7 0 g}$. The mass doesn't change when we mix a solute with a solvent, the solution just becomes denser.

But this is not always correct, sometimes mixing a solute and a solvent will create a gas, releasing some of the mass into the air, where it escape out.

:	SOLUTIONS
\%	fe Homewor

1. Solve the equation and color the picture.

2. Solve the equation and color the picture.

3. Solve the equation and color the picture.

Experiment 1

Solute	Solute mass until precipitate	Solvent (water) and Beaker mass	Total mass after precipitate
Example	209	1569	1769
Salt			
Sugar			

Experiment 2

Solute	Solute mass	Solvent (vinegar) and Beaker mass	Total mass before mixing (Calculated)	Total mass after mixing
Baking powder	$\mathbf{1 0 g}$			

1. Draw what you saw happen when we added baking powder

 to the vinegar.2. Where did the mass go from the solution in experiment 2?
\qquad

VOGABULARY

Definition is the green star.

My sentence is the blue star.

Mass

Density

Saturated

Particle

*

-i	SOLUTIONS
\%	fig riading eft

A solution is made when a solute dissolves in a solvent. However, the concentration can be different, we call this saturation.	
mildly saturated means there is space for more solute in the solvent.	Saturated, means there can no longer fit anymore solute in the solvent.

In this weeks
experiment
the solute
will be
Salt(NaCl) In
the picture
the salt is
shown as a
particle.

mildly saturated

Saturated

Saturation.

Saturation is how much you can put of one solute into a solvent. Different solvents have different saturations. You can only put 36 g of salt into 100 ml of water, before the water is saturated (Full of salt). But you can put 200g of sugar into 100ml of water before the solvent is saturated.

It is not only the solvent that decides the saturation, but also the temperature. The higher the temperature the more solute you need to reach a saturated solvent. We will talk more about this in next weeks experiment!

Remember, mixing a solute and a solvent makes the solution denser, it keeps the combined mass but does not always change its volume. We can use this to make things, that normally does not float, float! This week we will do two experiments! One to show that denser solutions float down, and one experiment that shows denser solutions can make less dense materials float.

Mildly Saturated

Saturated

Is shown as $\mathrm{Salt}(\mathrm{NaCl})$ particle

\leftrightarrow		

1. Write the correct state of the solution

2. Draw the salt particles

3. Draw the golf ball and write the correct state of the solution

4. Why would the golf ball float when there is more salt in the solution?

5. What happens when we add salt to a solution?

6. What can we use this information for?

目	SOLUTIONS			
\%	dis	GUIDs		

Density experiment.

Solute	Density	Colour	Order from $1-6$	
Water	$0.99 \mathrm{~g} / \mathrm{ml}$	Blue		
Oil	$0.92 \mathrm{~g} / \mathrm{ml}$			
Dish detergent	$1.03 \mathrm{~g} / \mathrm{ml}$			
Sirup	$1.37 \mathrm{~g} / \mathrm{ml}$			
Salt water	$1.20 \mathrm{~g} / \mathrm{ml}$	Red		
Soya Sauce	$1.08 \mathrm{~g} / \mathrm{ml}$			

1. In what order do you think you should place the solutions?

2. Color in your experiment. How did the solutions mix?

3. Why did the solutions not mix?

4. Color the pictures and solve the math problem.

5. Color the pictures and write the names of the pictures.

3. Write the definition and make a sentence. (Bonus. Draw a picture that matches the word

Dissolve

4. Solve the equation and colour the mixtures correctly.

5. What happens when we add salt to a solution?

6. What gas does vinegar, and Baking soda make? (Color the right answer)

Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$

Oxygen $\left(\mathrm{O}_{2}\right)$
Steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$

7. Draw the golf ball and write the correct state of the solution.

MOCABULABY

Definition is the green star.

My sentence is the blue star.
$\left(\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}\right)$
\star Super Saturated

Formation

$\star \overline{\text { Saturation }}$

\%	SOLUTIONS
\%	fly mianing afl

A solution is made when a solute dissolves in a solvent. However, the concentration can be different, we call this saturation.
mildly saturated means there is space for more solute in the solvent.

Saturated, means there can no longer fit anymore solute in the solvent.

In this weeks experiment the solute will be Alum $\left(\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}\right)$. In the picture the Alum is shown as a particle.

Saturation.

Saturation is how much you can put of one solute into a solvent. Different solvents have different saturations. You can only put 36 g of salt into 100 ml of water, before the water is saturated (Full of salt). But you can put $\mathbf{2 0 0 g}$ of sugar into 100 ml of water before the solvent is saturated.
It is not only the solvent that decides the saturation, but also the temperature. The higher the temperature the more solvent you need, to reach a saturated solvent.

Supersaturation:

Saturation is based on temperature. The higher the temperature the more solute is needed to saturate the solvent. When we heat up the water it is capable to get more solute, in this case Alum $\left(\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}\right)$. But what happens when the solution cools down? The Alum that can no longer mix with the solvent and begins mixing with itself, and creates crystal like formations, this is called supersaturation.

Saturated

Super Saturated
\bigcirc Is shown as Alum $\left(\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}\right)$. Particles.

1. Color the particles and crystals to match the solution.

2. How can we make something super saturated. (Color the correct answer)

By increasing the temperature and then lowering it

By lowering the temperature and then increasing it

By adding more solvent to the mix

3. What are some safety measures you should do when working with hot liquids? (Color the correct answer)

1. Color the beaker before adding alum. Draw particles that are inside the beaker.

2. Color the beaker after adding alum. Draw particles that are inside the beaker.

3. Color the beaker after waiting one week. Draw particles that are inside the beaker.

IXTRA

Draw your favorite character.

Tell me about them!

IKTRA
Draw yourself doing an experiment

FXTRA

Write about what you like in science
\qquad

